Highlights of Moriond EWK 2013

Wei-Ming Yao

Atlas/theory lunch seminar, March 21,2013

Outline

- •There are many interesting results reported at Moriond EWK. It would not be possible to summarize them all in 30 mintues.
- •All the talks can be found at https://indico.in2p3.fr/conferenceProgram.py?confid=7411 (EWK) and moriond.in2p3.fr/QCD/2013/MorQCD13Prog.html (QCD)
- •The summary of experimental talks by Paris contains 98 pages!
- •I will focus on some new results reported at the conference.
- All the errors are mine.

Executive Summary

- •The talks are evenly distribued between experiments ,theory, and among topics: Heavy Flavor, Top, Dark Sector, Neutrinos, Cosmos, SM Scalar, SUSY, and BSM.
- So far, there is no sign of new physics
 - –All discrepancies of the past are either gone or getting close to SM predictions (W+jj, B→τυ, ΔA_{CP} in D⁰, top A_{ER})
 - -The new boson is now called the Higgs boson.
 - –No signs of SUSY
 - -No signs of any new physics
- However, reasons for the physics BSM are still remaining:
 - Dark energy, dark matter, baryon asymmetry, mass of neutrino, and naturalness of the EWSB scale.

reDiscover SM @ LHC

QCD at work @ LHC

The W+jj Bump Hunting (CDF)

T violation (BaBar)

•First T-violation in B decays, this is direct by comparing the rates B0->B_ and B_ ->B0 •It's 14 sigma significance.

 Δt (ps)

ΔA_{CP} in $D^0 \rightarrow hh$ (LHCb)

Semileptonic:
$$\Delta A_{CP} = (+0.49 \pm 0.30(stat.) \pm 0.14(syst.)) \%$$

Prompt: (preliminary)
$$\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(syst.)) \%$$

- The two measurement are compatible at the 3 % level
 - $\chi 2 = 4.85$
- Naive average (neglecting indirect CP violation)

$$\Delta A_{CP,LHCb} = (-0.15 \pm 0.16) \%$$

Top Forward-backward Asymmetry(CDF)

- After correcting for acceptance and extrapolating: $A_{FB}^{l} = (9.4 \pm 2.4(\text{stat.})_{-1.7}^{+2.2}(\text{syst.}))\%$ compared to QCD+EW prediction of 3.6%
- Deviation of $\sim 2\sigma$

Forward-background Asymmetry at LHC

•At LHC qqbar→ttbar, tops tend to be "more forward" than anti-tops.

Reconstructing tt:
$$\Delta |y| = |y_t| - |y_{\overline{t}}|$$

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

In dilepton decays also use:
$$\Delta |\eta| = \! \left| \eta_{l+} \right| - \! \left| \eta_{l-} \right|$$

$$A^{ll}_{C} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)}$$

semi leptonic decay results

ATLAS [Eur. Phys. J. C72 (2012) 2039]: $A_C = -0.019 \pm 0.028_{(MH)} \pm 0.024_{(WH)}$

CMS [Phys. Lett. B717 (2012) 129]:

$$A_{\rm c} = 0.004 \pm 0.010_{\rm cont} \pm 0.011_{\rm cont}$$

Ac^{theory} (7TeV)= 0.0115 ± 0.0006

J.H. Kuhn and G. Rodrigo JHEP 1201 (2012)

dileptonic decay results

ATLAS [ATLAS-CONF-2012-057]: $A_C = 0.057 \pm 0.024_{(stat)} \pm 0.015_{(stat)}$ $A_C^B = 0.023 \pm 0.012_{(stat)} \pm 0.008_{(stat)}$

CMS [CMS PAS TOP-12-010]: $A_C = 0.050 \pm 0.043_{(gas)} \pm \frac{9.010}{9.009(rgs)}$ $A_C^R = 0.010 \pm 0.015_{(regr)} \pm 0.006_{(regr)}$

ATLAS Combined [ATLAS-CONF-2012-057]:

$$A_C = 0.029 \pm 0.018_{(mat)} \pm 0.014_{(mat)}$$

Top Mass and its Implication

T2K Results

Data: from Jan 2010 to July 2012

 3.01×10^{20} Protons On Target (POT)

 $^{\sim}4\%$ of T2K's target POT (7.8 \times 10²¹POT)

Stable v beam in whole period.

Oscillation analysis results

Near detector measurement

 $-v_{\mu}$ disappearance : $\theta_{23}\&\Delta m_{32}$ (New results in this winter)

 $-v_e$ appearance: θ_{13} (shown in ICHEP 2012)

Error on # of event@SK	w/ ND280 Meas.	w/oND28 0 Meas.
Flux × v x-sec.	21.7%	4.2%
Un-corr v x-sec	6.2%	
SK detector	10.5%	
Final State Int.	3.5%	
Total	25.3%	13.5%

•
$$(\sin^2 2\theta_{23}, \Delta m_{23}^2) = (1.00 - 0.068, 2.45 \pm 0.30 \text{ x} 10^{-3} \text{ eV}^2) @90\% \text{ CL}$$

θ_{13} (Daya Bay)

•Update using data up to May 2012.

Tevatron Higgs Searches

Tevatron Run II Preliminary, L ≤ 10 fb⁻¹

H→ZZ→4leptons

- •Slight different Pt of leptons cuts: 20,15,7,7/6(ATLAS), 20,10,7,7/5 (CMS)
- •Obsv/Exp: 6.6 $\sigma/4.4 \sigma(ATLAS)$ and 7.2 $\sigma/6.7 \sigma(CMS)$
- $\bullet \text{ATLAS:} \mu = 1.7^{+0.5}_{-0.4}, \ m = 124.3^{+0.6}_{-0.5} \ ^{+0.5}_{-0.3} \ \text{GeV; CMS:} 0.91^{+0.3}_{-0.24}, \ 125.8 \pm 0.5 \pm 0.2 \ \text{GeV}$

Η→γγ

- •CMS: improved Ecal calibration, added more exclusive channels, similar to ATLAS.
- •ATLAS: μ =1.64±0.34, m=126.8±0.7±0.2GeV
- •CMS:0.78 \pm 0.27(MVA),1.11 \pm 0.31 (cut),consist at 2 σ with 125.4 \pm 0.5 \pm 0.6 GeV

Significance@126.5: 7.4σ (4.1 exp.)

MVA Significance@125: 3.2 σ (4.2 exp.)

Cut-based p0 @124.5: 3.9 σ (3.5 exp.)

H→WW

•Similar selections: 25/15 GeV(ATLAS), 23/10(CMS).

•CMS: 2d-fit of $m_{_{||}}$ and $m_{_{||}}$, ATLAS uses mT in 2bin $m_{_{||}}$

Significance @ 125 GeV: 4.0σ (5.1 expected) μ =0.76±0.21

Significance @ 125 GeV: 3.8σ (3.7 expected) μ =0.83±0.36

Higgs Signal Rate and Mass

$$\sigma/\sigma_{sm} = 1.30 + -0.20$$

$$M_{\rm H}$$
=125.8+-0.2+-0.5 GeV
 $\Delta M_{\rm H}$ =2.3+-0.6+-0.6GeV(2.4 σ)

 $M_{\rm H}$ =125.8+-0.4+-0.4 GeV

Spin-parity from H→γγ

- •Spin-2+ hypothesis expected exclusion Cls at 93%
- •Observation compatible with spin-0+, slightly favored over spin-2+ hypothesis

Spin-Parity from H→ ZZ

•Using kinematic distributions to do distinguish different signal models and both data are consistent with 0+ hypothesis.

Η→ττ

- •Divided in five final states (ggH,VH, $H\rightarrow WW\rightarrow l\tau x$).
- •Observed excess of 2.9 σ , consistent with H(125).

Higgs Coupling

- •Studies of the coupling will help to understand what the new particle is and can be parameterized through coupling factors respect to SM.
- •Results are consistent with SM predictions.

H→invisible search (ATLAS)

Natural-SUSY searches

Non-MET SUSY

µ→eγ (MEG)

Upper limit (90% C.L.)	Sensitivity
1.3×10 ⁻¹²	1.3×10 ⁻¹²
6.7×10 ⁻¹³	1.1×10 ⁻¹²
5.7×10 ⁻¹³	7.7×10 ⁻¹³

Other Searches

Summary of BSM Searches

Backup

D0 Mixing (LHCb)

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

No mixing is excluded At 9.1sigma

36k

CPV in Bs→J/ψφ (LHCb)

- •Measurement based on 1.0 fb-1 data, mixture of CP-even, CP-odd, S-wave.
- •Full angular analysis in helicity basis is employed.

Dark Matter Searches

Dark Matter Searches (XENON100)

Η→γγ

Significance @ 125.0 GeV: 3.2σ (4.2 exp.)

Significance @ 124.5 GeV: 3.9 σ (3.5 exp.)

EWK Global Fits: Present and Future

$\chi^2_{min}/ndf = 21.8/14 \rightarrow p-value = 0.08$

- large value of χ^2_{min} not due to inclusion of M_H measurement
- without M_H measurement: χ^2_{min} /ndf = 20.3/13 \rightarrow naive p-value = 0.09

Pull values after the fit

- No pull value exceeds deviations of more than 3σ (consistency of SM)
- ▶ Small values for M_H, A_c, R⁰_c, m_c and m_b indicate that their input accuracies exceed the fit requirements
- Largest deviations in the b-sector: $A^{0,b}_{FB}$ and R^{0}_{b} with 2.5 σ and -2.4 σ (little dependence on M_H)
- R^0_b using one-loop calculation: 0.8 σ

- Assume 50% of today's theoretical uncertainty (implies three-loop EW calculations)
- Huge reduction of uncertainty for indirect determinations
- Strong constraints on S,T, U